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Mechanisms of turbulent mixing are explored by numerical simulations of one- 
dimensional and two-dimensional mixing with Pr < 1.  The simulations suggest that 
the local rate of strain y mixes the scalar field by a t  least two interacting 
mechanisms : the mechanism of generation, pinching and splitting of extrema 
proposed by Gibson ( 1 9 6 8 ~ )  which acts along lines where the scalar-gradient 
magnitude is small; and a new mechanism of alignment, pinching and amplification 
of the gradients which acts along lines where the scalar-gradient magnitude is large. 
After extrema are generated, they split to form new extrema of the same sign, and 
saddle points. These zero-gradient points are connected by minimal-scalar-gradient 
lines which continuously stretch at rates of order y ,  becoming longer than the viscous 
scale L,. For Pr < 1, this extends the influence of the local rate of strain to lengths 
of a t  least the order of the inertial-diffusive scale L, > L ,  ; that  is, larger than the 
maximum assumed possible by Batchelor, Howells & Townsend (1959). Roughly 
orthogonal maximal-scalar-gradient lines are also embedded in the fluid, and 
compressive mixing along these lines also reflects the magnitude and direction of the 
local rate of strain over distances larger than L,. Because the two rate-of-strain 
mixing mechanisms act along lines, they can be modelled by one-dimensional 
numerical simulation. Both are Prandtl-number independent and together they 
provide a plausible physical basis for the universal scalar similarity hypothesis of 
Gibson (19683) that turbulent mixing depends on y for all Pr. 

1. Introduction 
An important property of turbulence is its ability to mix and diffuse scalar fields 

such as temperature and chemical species concentration. Many processes of practical 
importance such as chemical reactions and propagation of acoustic and electro- 
magnetic waves in turbulent media depend on turbulent mixing and diffusion. 
Unfortunately, no clear understanding of the basic mechanisms of turbulent mixing 
has emerged even for the simplest case of dynamically passive, non-reacting scalars. 
The area of greatest disagreement is where the scalar is strongly diffusive. We shall 
investigate this problem in the following using numerical simulations. 

The first attempts to describe turbulent mixing were intuitive extensions of the 
Kolmogorov (1941) universal similarity hypotheses, based on dimensional analysis. 
Obukhov (1949) and Corrsin (1951) independently suggest that  the scalar diffusive 
microscale should be L, = ( D3/e); by analogy with the Kolmogorov viscous 
microscale L, = (v3/e); ,  where D is the molecular diffusivity of the scalar, B is the 



262 C .  H .  Gibson, W .  T .  Ashurst and A .  R. Kerstein 
viscous dissipation rate and v is the kinematic viscosity of the fluid. No physical 
mechanisms are proposed in these papers to justify L, as the diffusive microscale. 

1.1. Physical mechanisms of turbulent mixing 
Batchelor (1959) was the first to propose a specific physical mechanism of small-scale 
turbulent mixing. For weakly diffusive passive scalars, with Prandtl number 
Pr = v / D  > 1 ,  Batchelor (1959) suggests that  scalar wavenumber vectors with 
wavelength h < L, should align with the compression axes of the local strain-rate 
tensor and be convected rapidly to higher wavenumbers by the compressive strain 
until h decreases to a diffusive scale FZ (U/y) i ,  where y is some characteristic rate of 
strain of the turbulence. Because the strain rate is uniform over regions of size L, and 
because the smallest scalar wavelengths should be on scales smaller than I,,, the 
small-scale mixing mechanism envisaged is a compression of scalar wave crests by 
the local strain field. An analytic expression 

- DIC2 
# = &eXP- lY3l 

is deduced for the scalar spectrum # with viscous-convective subrange N k-' and 
with exponential cutoff a t  a diffusive (Batchelor length) scale L, = (D/y ) i ,  where 
x = 2D(V6)2 is the dissipation rate of scalar fluctuations, the rate-of-strain parameter 
y = ( E / v ) ~ ,  and ly31 is the mean compressive rate-of-strain magnitude. The form of the 
Batehelor spectrum for Pr > 1 has now been confirmed by several independent 
investigations, starting with Gibson & Schwarz (1963), and the universal pro- 
portionality constant PB 3 y/Iy31 is known to within about 30% accuracy. 

1, Batchelor, Howells & Townsend (1959) 
propose that the strain rate is irrelevant to the small-scale mixing because the 
smallest scalar wave-crest separation is much larger than the scale of uniform strain 
rate I,, = L, Pri, so that the wave-crest compression mechanism of Batchelor (1959) 
fails: it is impossible to fit the highest-wavenumber scalar Fourier eiements into 
regions of uniform strain rate so the wave crests cannot be convected together by 
compressive straining. A strong diffusive cutoff of the scalar spectrum a t  the Corrsin 
scale L,  is predicted, with an inertial diffusive subrangc proportional to k-y for scales 
L, + L + L,. Similar arguments are applied to explain the turbulent mixing of weak 
magnetic fields with magnetic Prandtl numbers less than unity by Moffatt (1961, 
1962), Golitsyn (1960) and Kraichnan & Nagarajan (1967), giving similar predictions 
for magnetic spectral forms with strong diffusive cutoff a t  L,. 

However, Gibson (1968a )  proposes that other mechanisms may exist for Pr < 1 
(and Pr 2 1) which produce coupling between turbulent scalar fields and the local 
strain rate but which do not require that the smallest scalar wave-crest separation 
L, be smaller than the size of regions of uniform strain rate L,. Using expressions, 
discussed in the next section, for the velocities of isoscalar surfaces and the velocities 
of points, lines and surfaces of zero and minimal scalar gradient, Gibson (1968a) 
shows that the local rate of strain generates scalar microstructure by a hot- and cold- 
spot pinching and stretching mechanism that may be independent of Prandtl 
number. Because scalar extrema are generated if turbulent eddies larger than 
L, = L,  t3-t are present, with diffusive time constant T, = T, Pr-i greater than the 
convective time constant T, (see table Z), and because the extremum points tend to 
move with fluid particles, the strain rate of the fluid particle associated with an 
extremum point has time to affect the scalar distribution in its vicinity. The scalar 
diRusive flux and convective flux are complementary in the direction of positive 

For strongly diffusive scalars, with Pr 
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strain rate and in opposition in the direction of compressive strain rate, so the scalar 
distribution about the extrema will be distorted in these directions by the fluid 
motion. 

The distortion of the scalar field occurs approximately along lines of maximum 
stretch and maximum compression to form minimal-gradient lines and maximal- 
gradient lines, respectively, emanating from the scalar extrema. As the minimal- and 
maximal-gradient lines form, they move with respect to the fluid and respond to 
stretch and pinch lines of the local fluid particles as they evolve. All these lines are 
long compared with L,. Even though the local rates of strain will tend to decorrelate 
a t  distances of I,, along lines selected randomly in the fluid, they need not decorrelate 
for all lines a t  such small scales. Because the rate-of-strain magnitude along the 
maximum-scalar-gradient lines is approximately the local average value y ,  the 
radius of curvature of the scalar distribution should be reduced from L, to L, for 
Pr < 1 by the pinching effect of convection in the direction of compressive strain, and 
the extremum hot spots and cold spots should be stretched by flow in the direction 
of positive strain. This process is modelled by a one-dimensional numerical simulation 
in $ 7  for Pr values as small as 0.001. 

Figure 1 ( a )  is a schematic representation of the Batchelor wave-crest-compression 
mixing mechanism. For Pr > 1 the wave-crests of the scalar Fourier element shown 
in figure l (a ) ( i )  are compressed together by the straining motion until they are 
separated by the Batchelor scale L,. At smaller scales diffusive damping begins and 
the amplitude of the scalar fluctuation rapidly decreases. For Pr < 1 the strain rate 
varies randomly on scales L, smaller than L, or L, as shown in figure 1 (a )  (ii), 
and the Fourier element is unaffected by the rate of strain in the asymptotic limit 
Pr < 1 according to the model. Diffusive damping occurs for wavelengths smaller 
than L,. 

Figure 1 (6) illustrates the Gibson (1968a) hot-spot pinching and splitting 
mcchanism for Pr < 1.  The response of an initially uniform scalar-gradient field 
(dashed lines) to the rotation of a blob of fluid of size L, is shown in figure 1 ( b )  (i). 
The strongly distorted isotherins are topologically unstable to molecular diffusion in 
the sense that the initially singly connected isoscalar surfaces become multiply 
connected, forming the complex array of extrema and associated saddle points 
shown In figure 1 ( b )  (ii). For Pr > 1,  eddies down to the smallest scale permitted by 
viscous forces (the Kolmogorov scale L K )  can generate extremum points from regions 
of uniform scalar gradient. For Pr < 1,  only eddies larger than the Corrsin scale L, 
can overcome the diffusive relaxation velocity and produce extrenia from uniform 
gradient regions. For all Pr values, once extrema are produced they tend to move 
with the fluid and be split repeatedly by the local rates of strain until their separation 
is L,, as discussed in Gibson (1968a).  

As shown in figure 1 ( b )  (ii), minimal-gradient lines pass through strings of positive/ 
negative extrema and their saddle points, and local stretching principal axes will 
tend to be aligned, giving an average positive rate of strain along the line. As shown 
in figure 1 ( b )  (iii), maximal-gradient lines form roughly perpendicular to these, with 
approximately aligned compressive principal rate-of-strain axes and negative 
average rate of strain along the lines. For Pr < 1 ,  the length of such maximal- and 
minimal-scalar gradient lines should be a t  least the original eddy size; in this 
example, the Corrsin length L,. 
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(ii) Pr < 1 : Batchelor et al. 

(I) Pr > 1 : Batchelor (1959) 
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FIGURE 1 (a,b). For caption see facing page. 
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FIGURE 1. Schematic representations of small-scale turbulent mixing mechanisms. (a) wave-crest- 
compression mechanism. (i) Pr > 1 : Batchelor (1959). A rectangular cross-section fluid element of 
size x L, is distorted by uniform strain. The embedded scalar Fourier element aligns with the 
compression principal axis and its wavelength is reduced to the Batchelor scale L, < L where the 
amplitude of the scalar fluctuation begins to decrease owing to molecular diffusion. (11) Pr < 1 : 
Batchelor et al. (1959). The rectangular fluid element with length equal to L, > L, > L, is 
distorted to H and plus shapes for different distributions of strain directions (which are assumed 
to fluctuate randomly along the axis of the Fourier element). Because the wave crest separation of 
the Fourier element is larger than the size of the regions of uniform strain L, the rate of strain has 
little effect on either the wavelength or the amplitude. Diffusive damping reduces the amplitude 
of scalar fluctuations of wavelength smaller than L,. 

(0) Rate-of-strain mixing mechanism for Pr < 1 : Gibson (1968~) .  (i) Convection of uniform scalar 
gradient. A fluid blob of scale L, rotates in an initially uniform gradient field, with dashed-line 
isotherms. The distorted isoscalar surfaces are shown by solid lines. (ii) Stretching on a minimal- 
gradient line. Strongly distorted isothermal surfaces are topologically unstable and become 
multiply connected by molecular diffusion, forming a hot-spot extremum shown by the plus, a cold- 
spot extremum shown by the minus, and associated saddle points. These zero-gradient points tend 
to move with the fluid and align with the stretching rate-of-strain-tensor principal axes for scalars 
of arbitrary Pr,  as discussed in the text. A minimal-scalar-gradient line (shaded) connects the 
extrema and saddle points, and is approximately aligned with local stretching axes. (iii) 
Compressive straining on maximal-gradient lines. Maximal-scalar-gradient lines (horizontal bar 
shading in (ii) and (iii)) form in directions roughly orthogonal to the minimal-gradient lines. 
Compression principal axes are approximately aligned along the lengths of these compression- 
diffusion lines, and cause the increased gradients. 

(c) Temperature dissipation spectra for Pr 4 1. Temperature dissipation spectra for mercury 
(Pr = 0.02) from Clay (1973) compared to numerical simulation data of Kerr (1985), normalized 
with Batchelor scales indicated by B subscripts (from Gibson & Kerr 1988, figure 4b). -, 
- - - - - - - are for mercury at Reynolds numbers of Re, z 520, 250 and 150, respectively (the 
upturn for 520 is noise). Symbols are from Kerr (1985) simulations. 0, A, Pr = 0.1 at Re, 83 and 
56, respectively; +, 0 ,  Pr = 0.5 and 1.0, respectively. -. .- is the theory of Batchelor et al. 
(1959) for Pr = 0.02. The -4f subrange begins near % L;' rather than % L;', reflecting rate-of- 
strain mixing for Pr 4 1, and is displaced by a factor of Pr-f = 2.7. 

5. 
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1.2. Universal similarity hypotheses 
Based on the hot-spot pinching mechanism just described, several universal 
similarity hypotheses for scalar mixing in different Prandtl-number regimes were 
proposed by Gibson (1968 6). These hypotheses arc summarized in table 1,  along with 
the corresponding Kolmogorov (1941) universal similarity hypotheses for high- 
Reynolds-number turbulent velocity fields. 

In  table 1 ,  F, and FHlz represent the 3n-joint and n-joint probability laws for 
velocity differences and scalar (0) differences, respectively, for separation vectors 
with magnitude yk (where k = 1,  . . . , n) ,  using the same nomenclature as Kolmogorov 
(1941) and Gibson (1968a, b) .  Velocity hypothesis 1 predicts a universal velocity 
spectral form with viscous cutoff a t  the Kolmogorov lengthscale after a coordinate 
transformation to dimensionless coordinates normalized by length and time scales 
L, and TK formed from 6 and v. Scalar hypothesis l ( a )  predicts a universal scalar 
spectral form, independent of Pr, with diffusive cutoff a t  the Batchelor scale after a 
coordinate transformation to  dimensionless coordinates normalized by length, time 
and scalar scales L,, T, and 8, formed from x, y and D. Dimensional analysis and 
velocit h othesis 2 gives the k-5 inertial subrange and scalar hypothesis 1 (b )  gives 
the k-a scalar inertial subrange. Scalar hypothesis 2 ( b )  leads to a new inertial- 
diffusive subrange proportional to k3. Hypothesis 3 (6 )  requires the viscous- 
convective L-l subrange predicted by Batchelor (1959). Length-scales for the various 
spectral subranges are given in table 1 .  

Transformation to dimensionless coordinates in three universal similarity spaces is 
accomplished with Batchelor, Corrsin and Kolmogorov length, time and scalar 
similarity scales required by scalar hypotheses 1 ( a ) ,  2 ( a )  and 3 ( a )  in table 1, as 
discusscd in Gibson (19686). The resulting scalar similarity scales are listed in table 2. 

1.3. Experimental and numerical evidence for scalar hypothesis 1 ( a )  
Clay (1973) measures spectra and other statistical parameters of temperature in 
turbulent mercury. The inertial-diffusive subrange indicated by Clay’s meas- 
urements is - kP3 for L, > L > L, and - k-7 for L, > I, > L,, which is consistent 
with both the prediction of Gibson (1968b), using hypothesis 2 (b)  of table 1, and the 
prediction of Batchelor et al. (1959), except with a smaller range of lengthscales. Clay 
measures the strain-rate-scalar-dissipation correlation coefficient, 

Y yp 

for turbulent temperature fluctuations in mercury, air and water, with Prandtl 
numbers of 0.02,0.7 and 7, respectively. In all cases he finds C values of about -0.4. 
As discussed in $3, the Batchelor et al. (1959) spectral theory indicates a rapid 
decrease of C to zero as Pr decreases below unity, whereas the Gibson (19686) 
spectral theory predicts a nearly constant value of -0.5 indepcndent of Pr. Kerr 
(1985) finds C = -0.5 for three-dimensional numerical turbulent mixing of scalars 
with Pr = 0.1, 0.5, 1.0 and 2. The negative sign of the correlation reflects the 
enhancement of scalar gradients in the direction of compressive straining, where u,,., 
is negative, and a decrease in scalar gradients in the stretching direction, where uz,z 
is positive (subscripts preceded by a comma denote partial derivatives that have 
precedence over exponents : thus uZ,, is au,/ax and T:, is (i3T/i3x)2). 

Figure l ( c ) ,  from Gibson & Kerr (1988, figure 4b) ,  shows that spectra of Clay 
(1973) and Kerr (1985) collapse to the same spectral level under Batchelor scaling 
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Scale Batchelor Corrsin Kolmogorov 

Length (DlY) l  (Dly?;); (VlY)l 
Time Y-l (Y p r y 1 ,  Y-l 
Scalar (XIYP (XlY p r v  (XIY)Z 

TABLE 2. Scalar similarity scales 

near kL, z 0.5 for the full range of Pr < 1 values considered. The dash-dot-dot line 
shows the -7 subrange predicted by the Batchelor et al. (1959) theory, which starts 
from kz L;l rather than k z J l ; l  as shown by the data. For mercury, the 
displacement is by a factor of Pr-f = 2.7, as shown. This spectral convergence with 
rate-of-strain scaling and the constancy of computer and laboratory C values near 
-0.5 support the Gibson (1968a, b)  proposal that the local strain rate should be 
relevant to small-scale scalar mixing for all Prandtl numbers. However, more 
detailed study is required to reveal the precise physical mechanism or mechanisms 
of the observed I’r-independent rate-of-strain mixing. 

1.4. Numericu,l simulation of ~ ~ r b u l e n ~  mixing 
Numerical turbulent mixing studies have recently become feasible with the advent 
of higher speed machines and efficient computational algorithms which can simulate 
turbulent flows a t  sufficiently high Reynolds number to be relevant. The nature of 
the numerical approach to turbulent mixing is well suited to studies of detailed 
mixing mechanisms since complete characterization of the velocity and scalar fields 
is available for each mesh point of the computational grid. Laboratory studies a t  low 
l’r values can be done by measuring temperature fluctuations in liquid metals. 
However, hot-film-anemometer spatial resolution is seriously degraded by the strong 
thermal diffusivity in liquid metals ; additionally, velocity and temperature sensors 
must be carefully insulated electrically by coating materials to avoid shorting 
through the metal. Mercury is expensive and poisonous, and molten NaK alloys burn 
on contact with air. As an alternative, free-electron concentration in weakly ionized 
turbulent plasmas is convected as a strongly diffusive passive scalar, with Pr < 1, 
and may be studied by electromagnetic-wave scattering. However, scattering studies 
tend to rcveal only averaged scalar structure such as spectra rather than mixing 
mechanisms. Computer studies for Pr < 1 may actually be easier than for Pr > 1 
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because the scalar diffusive cutoff occurs a t  larger lengthscales for a given vclocity 
field, permitting use of fewer mesh cells in the computation to resolve the scalar 
field. 

In  the following we analyse the results of a numerical turbulence-mixing simulation 
a t  low Prandtl number in an attempt to identify the physical mechanisms by which 
the strain-rate field becomes correlated with the rate of scalar dissipation, as 
observed by Clay (1973) and Kerr (1985). Kerstein & Ashurst (1984) used a numerical 
two-dimensional homogeneous mixing simulation to investigate the lognormal 
properties of the scalar dissipation rate x = 2D(V0)2 (a factor of 2 has been included 
to make the definition of x consistent with that of Batchelor 1959). The resulting 
computed velocity and scalar fields were saved, and are used in the present paper to 
study the mechanisms of strain-rate interaction with the scalar field. The study 
supports the Gibson (1968~) hot-spot pinching mechanism, but reveals a new, and 
unanticipated, interaction mechanism which occurs where the scalar gradients are 
large rather than small. 

Finally, low-Prandtl-number diffusion and convection along the stretch and pinch 
lines described above is analysed by a one-dimensional numerical simulation of high- 
Reynolds-number turbulent mixing in § 7. 

2. Kinematics of scalar mixing 
Following the Batchelor (1959) approach, we consider a dynamically passive scalar 

field like temperature mixed by an incompressible Newtonian fluid. Denoting the 
scalar as T ( x , t )  

where T is the partial derivative of T with respect to time t, x is the position in space 
and u is the velocity field. Both T and u are assumed to have zero mean values. 

Gibson (1968~) derives an expression for the velocity of an isoscalar surface a t  any 

( 2 )  T , + u - V T  = D V T ,  

point in the fluid 
UT = u - L ) ( E ) g ;  (3) 

where L)  is the molecular diffusivity of T and g is the unit vector of VT. The second 
term on the right is the diffusion velocity, i.e. the velocity of the isoscalar surface a t  
any point with respect to the fluid velocity. 

Equation (3) is derived by expanding T(x,t) using the chain rule 

dT = Tjdx,+T,,dt. 

This is zero on an isothermal surface, and on this surface dxj = u; dt. Combining with 
(2) gives 

T , j ( ~ F - ~ , )  = --DT,jj, 

which is = I !q  lUpuj1 

since the isothermal velocity relative to the fluid, uT-u ,  is parallel to the scalar 
gradient VT. The vector form of this is (3), an expression that is very useful in 
describing the response of a scalar field to convection and molecular diffusion. 

We can identify several modes of response, or lack of response, of the scalar field to 
fluid convection using (3) : 

(i)  When D = 0, corresponding to a non-diffusive scalar such as dye in liquid, we 
see that the scalar follows the fluid precisely ; that is, uT = u. 
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(ii) When D is non-zero the diffusion velocity vD may be larger in magnitude than 
the fluid velocity, depending on the ratio V2T/IVTI z 1/L. For turbulence acting on 
a uniform gradient scalar field, it follows from (3) that  the diffusion velocity vD z D / L  
dominates the convective velocity v, z ( C L ) ~  for eddies with lengthscale L smaller 
than the Corrsin scale L,, as shown by Gibson (1968a). For Pr > 1, eddy velocities 
a t  all lengthscales ( L  > L, > L,) are larger than the diffusion velocity. For Yr < 1, 
only eddies with L > L, have v, > vD. 

(iii) When (VTI approaches zero the diffusion velocity approaches infinity. 
Strongly distorted isoscalar surfaces can become unstable and then multiply 
connected owing to the formation of new isolated extrema, as shown by Gibson 
( 1 9 6 8 ~ )  and figure 1 (b ) .  

(iv) When the ratio V2T/IVTI is small the diffusion velocity may also be small even 
though D is large. This provides a new mechanism for the local strain rate to strongly 
influence the scalar microstructure even when Pr < 1.  Because the ratio will tend to 
be small where lVTl is large, compressive pinching of the local scalar gradients can 
be most effective at aligning and amplifying local scalar gradients just where the 
mixing is greatest, thus increasing the gradient and further decreasing the ratio in a 
positive feedback process. 

Gibson ( 1 9 6 8 ~ )  derives the following expression for the velocity of points in the 
fluid with zero scalar gradient : 

where the coordinate system is aligned with the principal axes of the tensor T i i  with 
principal values given by T,ll etc., T,ii represents V 2 T ,  and Tjil etc. are the 
components of the vector V(Tjj). Equation (4) shows that extrema diffuse toward 
positions of symmetry, where V ( T n )  = 0. The diffusion velocity of zero-gradient 
points with respect to the fluid velocity u is given by the second term on the right- 
hand side of (4). When extrema achieve a nearly symmetric shape they are convected 
nearly as fluid particles if their T ,  principal values are large, as they will tend to be 
for newly created extrema. When the point is near the end of its lifetime it can diffuse 
very rapidly because the principal values of T i i  approach zero, and the extremum 
will find and annihilate with its zero-gradient saddle point, which also will have a 
large diffusion velocity for the same reason, according to (4). Zero-gradient points lie 
on unique minimal-gradient surfaces which also tend to move with the fluid, and are 
stretched, pinched and aligned with the local rate of strain, as shown by Gibson 
(1968a). Stretching along lines that lie in minimal-gradient surfaces may occur over 
distances much larger than the viscous scale L,, as discussed previously. 

3. The strain-rate-scalar-dissipation correlation coefficient 
The strain-rate-scalar-dissipation correlation coefficient C, defined in ( 1 ), provides 

a powerful statistic for detecting the influence of fluid straining on the scalar 
dissipation rate x. Wyngaard (1971) derives several useful relations involving C, 
including the following expression for computing C from the integral of the high- 
wavenumber scalar spectrum : 

C = - (415) 15; ki & dk,, (5) 1: 
where q5 is the one-dimensional scalar spectrum and the subscript B indicates scaling 
with Batchelor length, scalar and time scales. 
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FIGURE 2. ( a )  Local strain-rate-scalar-dissipation correlation coefficient versus probe separation. 
C(r /L, )  values measured by Clay (1973) in mercury, air and water by time delay 6t.  setting r = 
u x St based on Taylor’s hypothesis, where u is the velocity. ( b )  Same data as ( a )  compared to  
numerical simulation data of Kerr (1985) computed by William Ashurst (from Gibson & Kerr 1988, 
figure 6) .  0 ,  Hg, Pr x 0.02, grid; 0 ,  air, Pr x 0.7, over ocean; 0, H,O, Pr x 7.0, sphere wake. 
Xumerical : A, Pr = 0.1 ; 0 , Pr = 0.5.  

Figure 2 ( a )  is a plot of the two-point correlation C ( r )  between the streamwise 
straining u ~ , ~  and the streamwise temperature gradient squared T:x a t  a point 
separated by a distance r along the x-coordinate, measured by Clay (1973) in 
mercury, air and water, as a function of r normalized by the Kolmogorov scale L,. 
Strong negative correlation begins at r = 2.5LK for all three Prandtl-number fluids 
with C ( r )  less than -0.3 for air and water for r = LK, and C(0) less than -0.4 for 
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FIGURE 3 .  S versus Pr  from t'heories and measurements. Open symbols are values inferred from 
spectral measurements using the integral expression of equation ( 5 )  : 0 = mercury, water, from 
Clay (1973) ; 0 = plasma, from Granatstein, Buchsbaum & Bugnolo (1971) ; A, air, from Boston 
(1970). 1)irect measurement' : 0 ,  air, from Clay (1973). Three-dimensional numerical simulation by 
Kerr (1985). +. Numerical models: -. .-. model No. 1 ofHill (1978); -. . .-, Larcheveque etal. 
(1980). Theories: Batehelor (1959); ---, Ratehelor et aE. (1959); -.-, Clay (1973); 
- - ~ ~  , Gibson (I968a). 

air. Instrumental difficulties prevented measurements for separations less than 
r = %.3L, for mercury, and less than r = L, for water. Recent analysis of the 
Kerr (1985) numerical simulation data by Ashurst, reported by Gibson & Kerr 
(1988, figure 6), are in good agreement with figure 2(a),  as shown in figure 2(8) 
for Pr = 0.1 (triangles), and Y r  = 0.5 (crosses). 

Figure 2 shows tjhat the local strain produces scalar gradients on very small scales 
indeed when one recalls that the viscous cutoff of the universal turbulent velocity 
spectrum begins a t  about k = 0.1L;' which is a wavelength of 60L,. The highest- 
wavenumber wave-crest separation for temperature in water should be smaller by a 
factor of Pri, that is, a t  a scale of about 2OL,, which is an order of magnitude larger 
than the scales a t  which strain rate is strongly correlated with scalar gradient 
magnitude according to figure 2. Because the same C(r /LK)  curve appears to 
represent both high- and low-Pr scalars, we have evidence in figure 2 that the same 
mixing mechanism may dominate in all cases, and that it is not wave-crest 
compression. Decorrelation occurs for r M (1 - 2 ) L K .  

Figure 3 compares C values for various theories and experiments as a function of 
Yr. The curves for Batchelor et al. (1959), Batchelor (1959), Clay (1973), and Gibson 
(19688) are computed from predicted theoretical curves using (5), the open circles are 
computed from measured spectra, and the solid point represents the only direct 
measurement, from figure 3, by Clay (1973) in air over the ocean. The curves for 
model No. 4 of Hill (1978) and for a test field model of Larcheveque et al. (1980) are 
taken from Kcrr (1985, figure 5) along with Kerr's values computed by three- 
dimensional numerical simulation. We see from figure 3 that  all theories and the 
laboratory and numerical experiments are in agreement that C is about -0.5 for 
weakly diffusive scalars, with Pr > 1 .  Howevcr, the laboratory and numerical data 
indicate that C remains relatively constant for Pr < 1, in agreement with the theory 
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of Gibson (1968b), and in disagreement with the theory of Batchelor et al. (1959) and 
the models of Hill (1978) and Larcheveque et al. (1980). 

4. The two-dimensional numerical mixing system 
It seems clear from the evidence of figures 2 and 3 that local strain strongly 

influences the small-scale structure of turbulent scalar fields a t  all Prandtl numbers. 
The remaining questions are : ‘By what physical mechanism or mechanisms does the 
rate-of-strain field interact with the scalar field to produce small-scale structure and 
enhance mixing ? ’ ; and ‘Are the same mechanisms dominant a t  all Prandtl numbers, 
providing a physical basis for universal similarity Z ’. 

As discussed previously, numerical simulations provide many advantages over 
laboratory experiments in attempting to answer these questions. However, it  is 
important in selecting the numerical scheme to be sure that the small-scale velocity 
and scalar field interaction mechanisms are not filtered out by any approximations. 
From figure 3 we see that schemes that approximate the equations of motion, such 
as Hill (1978) and Larcheveque et al. (1980), are inconsistent with measurements of 
the parameter Z for Pr < 1, whereas more exact numerical simulations at modest 
Reynolds numbers by Kerr (1985) are in good agreement (the agreement is achieved 
a t  considerable computational expense : some 70 hours of computation on a ‘ super 
computer’). To study mixing mechanisms that act a t  very small scales it may be 
better to have an approximate representation of the large-scale flow but with exact 
equations, than an exact representation of large-scale features with approximate 
conservation equations which may obscure the actual small-scale mixing processes. 

Kerstein & Ashurst (1984) explore the lognormality of the scalar dissipation rate 
x a t  low Pr in a homogeneous, two-dimensional mixing system using a discrete 
vortex simulation method developed by Ashurst (1979) and Ashurst & Barr (1983). 
As predicted by an extension of the Kolmogorov (1962) third universal similarity 
hypothesis (a refinement of the Kolmogorov hypotheses 1 and 2 in table 1 to account 
for the increase in intermittency of e and x with increasing Reynolds number), x 
averaged over regions of scale r were found to be lognormal with variance increasing 
approximately as In ( l / r )  as r decreased to a limiting value z L,, the Batchelor scale. 
This is consistent with the Gibson (1968a, b )  proposal that the smallest lengthscale 
for scalars with arbitrary Pr should be L,. 

Details of the computational method are given in the cited references and will not 
be repeated here, except to note that, because the simulation is two-dimensional, any 
mixing mechanisms that depend on vortex stretching will not be represented. For 
each realization of the velocity field, 200 vortices are assigned random locations 
within a square region of size L. The stream function !Pi for each vortex i is given 

(6) !Pt = - In (R2+ Ri), 

where the vortex core size R, is sampled from a uniform distribution over (0, R, ) and 
the vorticity strength r, is sampled from a uniform distribution ( -  r, I). In  the 
vortex dynamics algorithm, the vortices advect the scalar, and are themselves 
advected, by the velocity field that they generate. 

A homogeneous scalar gradient is simulated by imposing periodic boundary 
conditions on the scalar field along the top and bottom edges of the computational 
region, but imposing jump-periodic boundary conditions on the side edges. Therefore, 
fluid elements exiting a side edge have their scalar values reduced or increased by LQ 

by rt 

4x 
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upon re-entering the opposite side, where Q is the imposed scalar gradient. Advection 
and diffusion of the scalar field are implemented on an 80 x 80 Eulerian grid with 
diffusion coefficient chosen to exceed numerical diffusion due to the finite grid, as 
described by Ashurst & Barr (1983). 

Kerstein & Ashurst (1984) verify that the stream-function distribution and scalar 
distribution have relaxed to statistical stationarity in the realizations used in the 
following study of local mixing mechanisms. Several combinations of vortex core 
size and circulation are computed. I n  the following we examine eight realizations of 
their Case 1 :  the case with smallest core size and maximum circulation strength. 
Figures 4-8 illustrate only one of the eight realizations. 

Case 1 was chosen because it is most locally isotropic and shows the greatest 
variance of scalar and velocity dissipation rates of the available combinations, so 
that it seemed most representative of the local scalar and velocity structure of 
stationary high-Reynolds-number turbulence. One measure of the Reynolds number 
of a turbulent flow is the variance of the natural logarithm of the local dissipation 
rates: var (lnx) = var (lnT2,) or var (lne) = var (lnu;,,). Values of these quantities 
were computed for Case 1, and were found to be 3.0 and 2.8, respectively, 
corresponding to values that might be obtained in high-Reynolds-number laboratory 
flows or low-Reynolds-number atmospheric boundary-layer flows. 

Because the simulation of the velocity field has no kinematic viscosity coefficient 
v we must estimate an effective Prandtl number of the simulation indirectly. One 
method is to compare the high-wavenumber cutoff wavelengths h of the velocity and 
scalar fields since the ratio should be approximately equal to Prt, that  is, 

A,/A, = L,/L, = pr t  (7)  

for all Pr values according to the Gibson (1968a, b)  theory and equal to L J L ,  = Pra 
for Pr < 1 if the diffusive cutoff were at L, rather than L,, as postulated by 
Batchelor et al. (1959). An approximate version of this method of estimating the 
Prandtl number is to compare the number of scalar and vorticity (or stream- 
function) extrema. 

Figure 4(a ,  6 )  shows the locations of scalar and stream-function maxima and 
minima for one realization of the simulated mixing flow field after statistical 
equilibrium has been achieved. The extrema are located by comparison of a cell value 
with its eight neighbouring values. We see that there is more fine structure in the 
velocity field than in the scalar field, with 86 stream-function extrema compared to 
only 15 hot and cold spots. The number of extrema is inversely proportional to the 
square of their mean separation distance so the effective Prandtl number must be 
substantially less than one, and approximately equal to the ratio of scalar spots to 
vorticity spots from (7 ) ;  that is, Pr x 0.2. 

A qualitative demonstration that the simulated Prandtl number is small is given 
by figure 4 ( c ) ,  which is a plot of u,, the x-component of velocity u,  and the scalar 
value T as a function of x a t  a constant value of y = 0.5: a horizontal cut through 
the midsection of figure 4(a, b) .  Notice the finer scale of variation of the velocity 
signal compared with that of the scalar field, indicating that the Prandtl number is 
less than unity. Also note the equality of u, values a t  x = 0 and x = 1.0 and the 
imposed scalar gradient in the T plot, required by the jump-periodic boundary 
condition. 

For a better approximation of the wavelength ratio in (7), average distances 
between zero crossings were computed for T ,  and for u,,, (and T,y and u ~ , ~ )  for the 
eight realizations giving Pr = 0.3, from (7) ,  or 0.05 if the scalar diffusive cutoff is 
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FIGURE 4 ( a , b ) .  For caption see facing page. 

assumed to be a t  L, rather than L,. Thus, by all methods of estimation, the effective 
Prandtl number is substantially less than one, which is the case of interest. 

5. Results of the simulation 
To examine the interaction of the rate-of-strain field with the scalar-gradient field, 

unit vectors were computed a t  each mesh point of the 80 x 80 grid pointing in the 
direction of the positive principal strain axes x1 and with length equal to the diagonal 
size of a mesh cell, as shown in figure 5 (a ) .  Unit vectors pointing in the direction of the 
scalar gradient are shown in figure 5 (b) .  Comparison of figure 5 ( a )  with figure 5 (6)  
shows that the regions of uniform scalar-gradient direction are often the same size 
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FIGURE 4. Evidencr tha t  Pr for the two-dimensional simulation is less than 1. ( a )  Scalar extrema. 
( b )  Stream function rxtrema (maxima are solid circles and minima are open circles). ( c )  u(z, y = 0.5) 
and T(r,  y = 0.5). Note that  for ( a ) ,  ( b )  and ( c )  the  scalar field has less small-scale structure than 
the velocity field, indicating Pr < 1 .  

and in the same location as the regions of uniform strain-rate direction, rather than 
being randomly distributed in space and a factor of L J L ,  = 2.8 larger, which is the 
ratio computed previously. It would appear that the scalar-gradient field is 
responding to the rate-of-strain field. Qualitative confirmation of this conclusion is 
obtained by overlaying the two fields, which shows that in most locations the vectors 
are nearly perpendicular, that is, the scalar gradient g is aligned with the direction 
of compressive straining x3. 

A quantitative measure of the degree of alignment of the scalar-gradient direction 
with the rate-of-strain direction is shown in figure 6, which is a plot of g cos2 8 vectors 
a t  each mesh point, where 8 is the angle between the compression axis x3 of the rate- 
of-strain field and the unit vector g of the scalar gradient. If the two vectors were 
randomly oriented the average value of eos2 8 would be 0.5. The actual average value 
of cos2 8 computed for the eight realizations of the simulated flow field is significantly 
larger than 0.5 : (cosz 8 )  = 0.640 k 0.003. The ‘strain-rate-gradient alignment ’ map 
in figure 6 is compared to the corresponding scalar contour map in figure 9 below. 

Computation of the strain-rate-scalar-dissipation correlation coefficient Z: defined 
by (1) gives an average value for the eight realizations of -0.22 kO.01. This value is 
smaller in magnitude than the values of about -0.4 to -0.5 found by experiments 
and the Kerr (1985) simulation of three-dimensional turbulent mixing, shown in 
figure 3, but the negative sign indicates that compressive strain-induced mixing is 
also taking placc in the two-dimensional simulation. Further discussion of the 
interpretation of these results will be given in the next section. 

Figure 7 is a plot of vectors with length proportional to the local dissipation rate, 
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FIGURE 5.  Maps of positive strain and scalar gradient directions. ( a )  Positive rate-of-strain xl. 
( b )  Scalar gradient g. 

i.e. the squared scalar gradient, and with the direction of the local scalar gradient. 
It shows that the dissipation is not uniformly distributed, but is concentrated in a 
few elongated regions with width about equal to the size of the regions of uniform 
strain-rate direction shown in figure 5 (a).  

Figure 8 ( a )  is a contour map of the scalar field, and may be compared to the 
dissipation plot of figure 7 and the hot- and cold-spot plot of figure 4(a). Figure 8 ( b )  
is an overlay of this contour map with the strain field of figure 5 (a ) ,  and shows that 
the ridge lines of the scalar contours generally coincide with the directions of positive 
strain, as expected from the model of Gibson (1968a) which predicts the stretching 
of minimal-gradient surfaces by the strain-rate tensor in three-dimensional turbulent 
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FIGURE 6. Map of strain-rate-scalar-gradient alignment parameter cos2B, where B is the angle 
between the scalar gradient and the compression rate-of-strain axes. The average of cos2 0 is 0.64, 
versus 0.5 if the directions were oriented at random. The lines are scaled to the cos2 0 value and are 
in the scalar gradient direction g. 
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FIGURE 7. Scalar dissipation rate. Vectors with length proportional to (VTI2 and direction of VT. 
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FIGURE 8. Scalar field and strain field. ( a )  Contour map of the scalar field - 20 contours. Arrows 
indicate the direction and length of the regions of positive rate of strain x1 on ridge lines. Alignment 
of x1 with ridge lines illustrates the effect of strain-rate-mixing mechanism 1. ( b )  Overlay of ( a )  with 
the positive straining field of figure 5 ( a ) .  

mixing : the two-dimensional analogue is stretching and alignment of contour ridge 
lines with the directions of positive strain. Strain-induced splitting of extrema by the 
local strain-rate field was observed by comparing a time sequence of extrema maps 
such as figure 4 ( a )  overlaid with the corresponding strain-rate fields such as in figure 
5 (a ) .  Arrows are drawn on some of the contour ridge lines of figure 8 ( a )  showing the 
alignment of the ridges with the direction and length of the positive strain regions, 
shown in more detail in figure 8 (b) .  Two pairs of recently split maxima are shown in 
figure 4 ( a ) .  These are separated by ridge lines aligned with the positive strain axes, 
from figure 8 ( b ) ,  as expected from the minimal-gradient stretching mechanism. 
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FIGURE 9. Overlay of scalar contour map of figure 8(a)  with the strain-gradient alignment map 
of figure 6. Good alignment where the scalar gradient magnitude is large illustrates the effect of 
strain-rate-mixing mechanism 2 .  
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FIGURE 10. Conditioned averages of (V'TI (----), (V2TI/IVTI ( . . . . . . )  and (VT1' (-); and 
relative frequency of samples (-.-), versus alignment angle 0 between compressive strain x, and 
scalar gradient g directions. The decrease in IVzTl/lVTIIO] as O i 0  supports the new 'gradient- 
pinching ' mechanism 2 .  
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Figure 9 shows an overlay of the scalar contours of figure 8(a )  with the cos26' 
'strain-gradient alignment' map of figure 6 .  All of the regions of maximum 
dissipation rate coincide with regions of strong strain-gradient alignment, suggesting 
that the strain may be causing the strong gradient magnitudes by aligning the scalar- 
gradient directions and amplifying the gradient magnitudes. Overlays similar to 
figure 9 were carried out for the eight realizations of the simulation and all indicate 
the same pattern of strong alignment in regions of maximum scalr r dissipation rate, 
but these will not be shown in this paper to conserve space. Kerr (1985, figure 19) 
shows regions of strong scalar gradient with strong negative straining in his three- 
dimensional numerical simulation which are remarkably similar to those shown in 
figures 7 and 9 of the present paper. 

Figure 10 shows conditioned averages of (VT)',  IV'TJ, and the ratio IVz5"l/lV(TI, all 
as functions of the angle 8 between the compressive strain axis and the scalar 
gradient, normalized by the maximum values of the functions. The angular range 
was divided into 5" bins, and the conditioned averages of the three quantities within 
each bin was computed for the eight realizations, giving 80 x 80 x 8 = 51 200 samples 
each. From figure 10 we see that large ( ( V T ) 2 )  values are found when the alignment 
angle 13 is nearly zero, but that  (IV2TI) hardly varies with 8 at all. 

The ratio (V2T(/IVT( is the magnitude of the diffusion velocity of an isoscalar 
surface with respect to a fluid particle, except for the factor D 

according to (3). As shown by the dotted line in figure 10, when the scalar gradient 
is aligned with the axis of compressive strain rate so that 0 approaches zero, the 
average diffusion velocity is small compared with averages where 8 is larger. This is 
a clear demonstration of the new strain-induced mixing mechanism, identified in this 
paper, which operates where the scalar gradients are high. 

Also shown in figure 10 is the relative frequency of observation of samples as a 
function of the alignment angle 8 (dot-dash line), which shows that the probability 
of gradient alignment is much higher than the probability of non-alignment. 
Curiously, the shape of this @histogram of sample values is almost identical to that 
of the $-conditioned average IVTI2 shown by the solid line. 

Another measure of the correlation between the strain-ratc and scalar-gradient 
fields is the strain-magnitude-dissipation-magnitude correlation parameter 

which is found to be 0.78_+0.02 for the eight realizations discussed above. This 
parameter arises in the analysis of the next section. 

I n  addition, the quantity 
(u:,,> 
(IYI') 

n=-  

was computed since it provides a further indication of the alignment of the rate-of- 
strain axis with the scalar gradient, where x' is taken in the direction of the scalar 
gradient. For the eight realizations the average value of n was found to be 0.87 0.03 
compared with 1.0 if they were perfectly aligned everywhere and about 0.5 if they 
were uncorrelated. Kerr (1985, equations (44,45)) computes fourth-order mixed 
scalar-velocity derivative correlations very similar to m and n for Pr values as small 
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as 0.1. These correlations and their weighted sum are also large compared with 
uncorrelated values for Pr < 1, and show an increase with Re and possibly a tendency 
to  converge to a constant value for various Pr values in Kerr (1985, figure 12). 

6. Interpretation of C, m and (cos26)  values 
In  this section we shall attempt to assess the relative importance of the two 

identified mixing mechanisms using the computed statistical parameters C, m and 
(cosz 8) of the numerical simulation. 

Based on the definition of Z in (l) ,  C can be interpreted as a measurable version 
of the correlation coefficient for the alignment between VT and the rate-of-strain 
tensor e, where e has components ei, = & ( U ~ , ~ + U ~ , $ ) .  We might expect a pro- 
portionality between C = CID and the more general quantity C,, 

( V T .  e .  V T )  
( e  : e ) ;  (VT V T )  

C,, = 

= c3 z,D, 

where c, is a universal proportionality constant. 
Wyngaard (1971) gives the expression 

( V T - e - V T )  = F(u, , ,Tf , )  (9) 

for three-dimensional isotropic turbulence. The terms in the denominator of (8) are 

( e : e ) ;  = [ ~ < U ~ , J ] ~  (10) 

and ( V T - V T )  = 3(T2,), (11)  

C3D = (5/6)iC:,, (12) 

also assuming isotropy. Combining (l) ,  (8), (9), (10) and ( 1 1 )  gives 

so the universal constant c, is (5.6); = 0.91. 
It can be shown (derivations of the isotropic (9) and (10) as well as (13) are given 

in the Appendix, for convenience) that the expression equivalent to (12) for the two- 
dimensional isotropic strain-rate-dissipation correlation coefficient C2D is 

'2, = CID. 

From (13) and the definition of .Z2, 

Now the numerator of the right-hand side of (14) has the form of a product average 
( A M )  where A = cos28 is the alignment parameter and M = IyI IVTI2 is the 
magnitude product. The product average can be decomposed to determine if any 
correlation exists between the fluctuating components of A and M 

(15) (AM) = (A) ( M )  + (A'M), 
where (A') = (M') = 0. From the previous discussion, the new large-gradient 
pinching mechanism 2 exists where both A and M are large, whereas the Gibson 
(1968 a )  zero-gradient pinching mechanism 1 is most effective where the alignment A 
is large but the magnitude product M is small. Therefore, any positive correlation 
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Mixing mechanism 

FIGURE 1 1 .  Schematic distribution of A’ and M’ between adjacent hot and cold spots for 
Pr < 1. The ‘ hot-spot pinching ’ mechanism 1 should dominate within L, of the extrema and cause 
A‘M‘ to be negative. The ‘gradient-pinching ’ mechanism 2 should dominate elsewhere and cause 
A‘M’ to be positive. The sign and magnitude ofthe average (A’M‘)  gives a measure of the relative 
importance of mechanism 1 versus mechanism 2. 

between A‘ and M’ can be attributed to mechanism 2 and any negative correlation 
to mechanism 1.  

For Pr > 1, we might expect the effects of the two strain-mixing mechanisms to be 
indistinguishable from cach other and from the Batchelor et al. (1959) wave crest 
compression mechanism because all of these are effective everywhere. However, for 
the present case with Pr < 1 we expect mechanism 1 to function within a distance of 
order A,  of an extremum (or a minimal-gradient surface) and mechanism 2 to be 
most effective halfway between cxtrema of opposite sign, where the gradients should 
be largest, as shown by the schematic diagram in figure 11.  Since both mechanisms 
contribute to the product ( A )  ( M )  in the same way, the two cannot be distinguished 
if the correlation (A‘M’) = 0, even when Pr < 1 .  Figure 11 shows the anticipated 
variation of A’, M’ and the product A’M in the regions between the hot spot and cold 
spot for Pr < 1, so that the two strain-mixing-mechanism regimes may be 
distinguished by the sign of the average ( A ’ M ) ,  as shown, If the sign is positive the 
implication is that mechanism 2 is the dominant strain-rate mechanism contributing 
to this component of the strain-rate parameter 25’. If it is negative then mechanism 
1 is dominant. 
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Parameter Value Mechanism 

c -0.22f0.01 1 , 2  
‘alignment -0.154+0.005 1 , 2  
‘magnitude - 0.066 f 0.015 2 
rn 0.78 f 0.02 1,2 
n 0.87 f 0.03 1 ,2  
(cos2 0 )  0.64 f 0.003 1 , 2  

TABLE 3. Strain-rate mixing parameters of the simulation 

From (14), (15) and the definitions of m and M ,  so that m = (M)/(ly12)i(IVT12),  
we find c,, = c2, 

- ( A )  m (A’M’)  
- 

1.414 ( 2 ~ y ] z ) ~ ( ~ V T \ z )  
- 
- Calignrnent + Cmagnitucie. 

Substituting C = -0.22, ( A )  = 2(c0s28)- 1 = 0.28 and m = 0.78, from the last 

-0.066. Thus for the conditions of our simulation Cmagnitude is significantly non- 
zero and negative, and accounts for about 30% of the total straindissipation 
correlation coefficient C. Because (AIM’) is positive this component of C may be 
attributed to the new strain-mixing mechanism 2. The new mechanism can combine 
with other mechanisms such as the zero-gradient point and minimal-gradient surface 
stretching and pinching mechanism to produce the remaining 70 %. 

Table 3 summarizes the strain-rate-mixing parameters computed from the 
simulation. Each of the parameters gives evidence of strain-rate mixing, and each 
can be affected by either strain-mixing mechanism 1 or 2. The value of Crnagnitude 
shows that this parameter is dominated by mechanism 2. 

section, into (16) gives CID = Z2D = -0.22, Calignrnent = -0.154 and Cmagnitude - - 

7. One-dimensional numerical simulation of turbulent mixing for Pr 4 1 

As shown in figure 1 ( b ) ,  mixing and diffusion for Pr -4 1 depends on straining and 
diffusion along lines according to the Gibson (1968a) theory, suggesting that it may 
be useful to simulate these processes by one-dimensional modelling. Evidence of 
strong alignment of scalar gradients with rate-of-strain axes is given by the two- 
dimensional simulation above, and by the three-dimensional simulation of Kerr 
(1985) reccntly analysed by Ashurst et al. (1987). One-dimensional convection and 
diffusion are simulated along maximal- and minimal-gradient lines with lengths up 
to L,. Rate-of-strain magnitudes are estimated using the universal turbulent 
velocity spectrum, assuming the Fourier components are in phase and compressing 
and stretching, respectively. Normalizing (2) with Kolmogorov length and time 
scales from table 2, the centred finite-difference expression for the scalar con- 
centration C a t  time t K  + 6t, is given by 

10 FLM 194 
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FIGURE 12(a ,b ) .  For caption see facing page. 

where t ,  = ty, x ,  = x / L ,  and uK = u / ( L K  y ) .  The first coefficient in parenthesis on 
the right side of (17) is set to f for numerical stability, so the second coefficient in 
parenthesis on the right is +6xK Pr. The velocity u for stretching in the x-direction is 
the sum of a sine wave with amplitude one and wavelength 2.n plus a sine wave of 
amplitude Pr-g and wavelength 2.nPr-a to simulate turbulence a t  a Reynolds number 
Re = Recrit Pr-' such that the energy scale Lo = L, = L, P d .  For compression, the 
sign of u is reversed. The following simulations were carried out by the first author 
with a personal computer, using a commercial spreadsheet program to compute 
C(t,,x,,Pr) from (17). 
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FIGURE 12. ( a )  Simulated turbulent velocity for diffusion stretching on a minimal-gradient line for 
turbulent mixing a t  Pr = 0.1 with Re = RecritPr-'. The velocity is the sum (17) of an L, scale 
velocity (+ )  and an inphase velocity (0) a t  the energy scale L,. ( b )  Same as ( a )  but for diffusion 
compression on a maximal-gradient line. ( c )  Same as ( a )  for Pr = 0.1 (+), 0.01 (O), and 0.001 (A). 
The solid line shows the viscous scale velocity component. 

Figure 12(a)  shows the components and sum of the in-phase viscous and energy 
scale velocities for the simulated turbulent diffusion-stretch line for Pr = 0.1. Figure 
12 (b)  is for a diffusion-compression line at the same Pr value. Figure 12 (e) shows the 
stretch velocities for Pr = 0.1, 0.01 and 0.001. From figure 12(c) we see that the 
strain rate due to the energy scale velocity is comparable with that from the viscous 
scale velocity. The value near x = 0 is proportional to Pri so, for the smallest Pr  value 
of 0.001, the strain rate due to the energy scale is still 42 % of that from the viscous 
scale, even though the lengthscales differ by a factor of 177. 

Figure 13(a) shows the evolution of an extremum point with Gaussian initial 
distribution under the influence of the stretching velocity field of figure 12(a) for 
Pr = 0.1. The boundary condition a t  the largest scales, proportional to the Corrsin 
scale L,, is insulation, with no flux in or out a t  x = fO.l-hL,. For increasing time 
the extremum is stretched into a zero-gradient line as anticipated. 

Figure 13 ( b )  shows the evolution of the same initial concentration distribution as 
for figure 13(a),  but under the compression velocity field of figure 12(b). The 
amplitude and radius of curvature of the extremum decrease rapidly with time, 
showing the rapid mixing which takes place when scalar gradients are increased by 
negative rates of strain. 

Figure 13(c) compares the scalar distribution for the same initial and boundary 
conditions after the same tJime interval but for different velocity fields. The stretched 
and compressed distributions are the same as for figure 13 (a,  b) .  To see the effect of 
local strain, the velocity was set to one cycle of local compression for one 
Kolmogorov wavelength about the origin, with a 10 D/U stretch outside this zone. The 
local compression distribution is almost identical to that for no velocity a t  all after 
the same time interval of n = 60. This shows that to be most effective in the low-Pr 

10-2 
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mixing process, the strain rate must be coherent over scales larger than L,, which 
is consistent with one aspect of the central assumption of Batchelor et al. (1959). 
Thus, for y to indeed be relevant to mixing for all Pr, it  is necessary for any 
representative mixing model to show that straining can take place over lengthscales 
much larger than L, with rates comparable with the local value y in turbulent 
mixing with Pr 6 1. The requirement is satisfied along diffusion-stretching and 
diffusion-compression lines, as shown in figure 12(a-c) and in figure 16. 

Figure 14(a) shows the evolution of a ramp-like initial scalar distribution for 
Pr = 0.001 under the influence of the energy scale stretching for a simulated 
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FICVRP 13. ( a )  Diffusion and convrction for stretching along a minimal gradient line at Pr = 0.1. 
The velocity is shown by ( O ) ,  C for n = 0 ( +  ), n = 20 (O), n = 40 (A), ( n  = 60 ( x ) The time 
int,erval is 6t, = ~(SS, )~PT,  and the time 6, = n6t,. fb)  Same as ( a )  but for compression along a 
maximal-gradient line. ( c )  Same as for (a)  for different velocity fields at n = 60. Initial scalar 
distribution (n), u = 0 (+) ,  u = stretching (O) ,  u = compression (A), u = local compression-far 
tield stretching ( x ). 

Re = Recrlt Pr-l flow. The distribution rapidly flattens about the extremum point. 
This may be compared to the evolution of the same initial distribution with the sign 
of the velocity reversed to give compression, as shown in figure 14(6),  where the 
distribution amplitude and lengthscale rapidly decrease. Clearly the stretched-out 
extrcma of figures 14(a) and 13(a) will split into multiple extrema if slightly 
perturbed, for example by random lateral diffusion. 

8. Summary and conclusions 
A numerical simulation of low-Prandtl-number turbulent mixing is carried out in 

a homogeneous two-dimensional mixing field. From a comparison of the average zero 
crossing frequency of the scalar gradients and velocity gradients the effective Prandtl 
number is estimated to he about 0.1. 

Examination of the computed strain-rate and scalar-gradient fields reveals that 
the strain rate produces mixing by two distinct mechanisms : (i) stretching, pinching, 
splitting and convection of zero-gradient points and minimal-gradient lines and 
surfaces, as prediced by Gibson (1968a) ; and (ii) strain-gradient alignment and 
amplification where the scalar gradients are particularly large in magnitude so that 
the isoscalar surfaces have a stronger than average tendency to be convected by the 
fluid motion. The second mixing mechanism is new, and may be explained using the 
expression 

for the velocity of an isoscalar surface, derived by Gibson (1968~) .  

UT = u--D(V2T/(VTl)g 

An attempt is made in $6 to compare the effectiveness of the two mechanisms at  



288 C. H .  Gibson, W .  T. Ashurst and A .  R. K'rrstein 

80 
70 
60 
50 
40 
30 
20 

10 
0 

- 10 

- 20 
- 30 

- 40 

- 50 
- 60 
- 70 

- 80 
-700 -500 -300 -100 100 300 500 700 

X K  

80 
70 

60 
50 
40 
30 

20 
10 
0 

- 10 

- 20 
- 30 

- 40 
- 50 
- 60 

- 70 

- 80 
-700 -500 -300 -100 100 300 500 700 

XK 

FIGURE 14. (a )  Diffusion and convection for Pr = 0.001 with energy scale stretching. Velocbity (O), 
initial scalar distribution n = 0 (+),  n = 1 (O), n = 2 (A). ( b )  Same as (a).  but  with Lc scale 
compression along a maximal-gradient line simulated. 

producing strain-rate-dissipation correlation. According to this comparison, C,, = 
-0.22 is the sum of Callgnment = -0.15 and Cmagnitude = -0.07. From the negative 
sign of the net Cmagnitude we infer that  this second component is dominated by 
mechanism 2. Mechanism 1 initiates the strain mixing by stretching o u t  minimal- 
gradient surfaces, increasing the local gradients. These gradients are further 
amplified by the positive feedback of mechanism 2. 

Both mechanisms contribute to an overall, Pr-independent, strain-mixing process 
which couples the rate-of-strain field to the scalar-dissipation field. This supports the 
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universal similarity hypothesis 1 ( a )  of Gibson (1968 b )  in table 1, which states that 
small-scale structures of scalar fields should be universally similar for all Prandtl 
numbers when normalized with the Batchelor length, time, and scalar scales of table 
2. Temperature spectra measured in mercury, air and water, with P r  = 0.02, 0.7 and 
7, by Clay (1973), and recent numerical spectral estimates of Kerr (1986) for Pr = 
0.1, 0.5 and 1, all collapse to approximately the same curve a t  high wavenumbers 
near LB1 under Batchelor scaling. These observations also support the Gibson 
(1968 b )  universal similarity hypothesis and contradict the proposal of Batchelor 
et al. (1959) and others that the local rate of strain should be irrelevant to mixing 
for Pr < 1.  

The strain-rate-scalar-dissipation correlation coefficient 2 for the two-dimensional 
simulation was found to be about -0.22 compared to the experimental value of Clay 
(1973) of -0.4 and the recent three-dimensional numerical value of Kerr (1985) of 
-0.5. At this time it is not known why the two-dimensional value has a smaller 
magnitude. One possible explanation is that not all of the strain-rate-mixing 
processes have been simulated in two-dimensions. Vortex stretching may play an 
important role, although we note Kerr (1985) finds that (VT-o) decreases toward 
zero with increasing Reynolds number, where o is the vorticity vector, indicating a 
tendency toward local two-dimensionality with scalar gradients perpendicular to the 
vorticity . Further studies of numerical mixing simulations with three-dimensional 
effects included and with wider variation of Prandtl number are needed to be sure 
that all important mixing processes have been identified, and to further assess their 
relative importance. 

We conclude from the one-dimensional turbulent-scalar-mixing simulations of 8 7 
that the local rate of strain is relevant to low-Pr turbulent mixing only if the rate of 
strain is correlated (of constant sign) over lengthscales very large compared with 
L,, and with magnitudes comparable with local values y .  This is possible along 
maximal scalar gradient lines and minimal scalar gradient lines. Such lines will 
develop in turbulent scalar fields even for extremely small values of Pr if the 
Reynolds number of the flow is large enough to produce scalar extrema; that is, 
Re 3 Recrit Pr-l. The strain rates on such lines should be close to those of the local 
stretching and compression values, respectively. The line lengths will be of order 
L ,  long compared with L,, thus extending the range of influence of y on the mixing 
process to scales larger than the maximum assumed by Batchelor et al. (1959). 

The present study shows that numerical simulations of turbulent mixing processes 
may be used under circumstances that are difficult to reproduce experimentally. 
Despite the one- and two-dimensional nature of the simulations and other 
approximations to actual flows, the technique is clearly a valuable tool which will be 
increasingly used as its power and limitations are better understood and as 
computing capacity improves. Comparison of the present simulations with three- 
dimensional simulations such as Kerr (1985, 1986) is an obvious important next 
step. 
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Appendix 
A . l .  Derivations of equations (9) and (10) 

Contractions of isotropic turbulence tensors expressed in terms of measurable 
quantities, such as (9) and (lo), are usually presented without proof and tend to be 
treated as 'magic formulas ' by students, and others. For convenience, we present the 
following derivati ons. 

The general form of an isotropic tensor of rank 4 is given by the expression 

Dijkl = a8ij 8kl + b(6ik + 6,, S j k )  + c(S$, 8jl - Si, S j k ) ,  (A 1) 

where a ,  b and c are scalars, as shown by Fung (1969, p. 193). 
Consider the tensor of rank 4 formed from the scalar gradient and the rate-of- 

strain tensor 

Averaging (A 2) in a high-Pdclet-number flow should give an isotropic tensor of 
rank 4 according to hypothesis l(a), table 1, so 

(Eijkl) = (Tiej ,cy: j )  = asij6k,+b(6,k6jl+6ilSjk)+c(Si,S,1-SilSjk) (A 3) 

from (A 1 ) .  
We can rewrite (A 3) in terms of scalars p = b + c and q = b - c,  which gives 

( E i j k l )  = asi j  &kl +Psi, ' j l  + @il ' j k .  (A 4) 

For incompressible fluids, eij = 0, so setting j = k in (A 4) gives 

0 = asii Sil +pai, S,, + qSi, Sjj = (a  + p + 39) Si, ; 

(a+p+3q) = 0,  

where the quantity in parentheses must be zero since Sjl is not. Repeated indices are 
summed over their range of values : i,j, k ,  1 = 1 , 2 , 3  in three dimensions and 1 , 2  in 
two dimensions. 

From the symmetry of the rate-of-strain tensor eij = eii and (A 4 )  

( E i j k l )  = ( E i k j l ) t  

5 0  from (A 4) asij 6 k ,  +psi, Si, + q6i, 8 jk  = +psi, + qdi, d jk  (A 5 )  

giving a = p  (A 6) 

by equating coefficients. 

(A 6), to give 
Combining (A 6) and (A 5 )  gives a = -fq, which is substituted in (A 4), along with 

(A 7 )  (Eijkl) = a( 6, Ski + Sik Sj, -;ail Sjk). 

Setting i = j  = k = I = 1 in (A 7)  

(Ell,,) = a(S,,S,, +a11 811 - ; s l l~ l l )  = %. 

(Eijkl) = $<Elll l)  ( ' i j  + &ik &jZ -gSi1 S j k )  

(A 8) 

From (A 7)  and (A 8) we see that 

(A 9) 

which is the general expression for the isotropic tensor in three dimensions. 
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Setting i = j and k = 1 in (A 9) gives 

( E i i k k )  = ('it ' k k  + ' { k  'ik-$'ik ' i k )  

= i(Ellll) (3 x 3 + 3 - 2 )  = Y ( E l l l l )  

which verifies equation (9) quoted by Wyngaard (1971). 
Equation (10) map be similarly obtained. 

29 1 

A.2. Derivation of equation (13)  

M'e now derive the relation C2, = C,, = C between the straindissipation correlation 
coefficients for two-dimensional isotropic flow and the one-dimensional measurable 
quantity C given by ( 1 ) .  

The form of the two-dimensional isotropic tensor of rank 4 is identical to (A 4 ) ,  

( E i j k l )  = a'ij dh.1 + p s i ,  8 j l - k  q s i ,  s j k ,  (A 10) 

except that the indices i , j , k , l  now have values ( 1 , Z )  rather than (1 ,2 ,3 ) ,  For an 
incompressible fluid, (A 10) becomes zero whenj = k, which for two-dimensional flow 
gives a+p+2q = 0 because Sjj = 2. 

The symmetry condition gives a = p so a = -q .  both of which are substituted in 
(A 10): 

to give the general expression for the isotropic tensor in two-dimensions. 

(A 11) ( E i j k l )  = a(si]  'kl  + ' i k  ' jL  - ' $ 1  ' j k )  

We can interpret the scalar a by setting i = j  = k = 1 = 1 in (A 11) 

(E1111) = 4'11 '1, + '11 '11 - '11'11) = a 

( E i j k L )  = (Ellll) ('ij 'k l  + ' i k  ' $ 1  -'it 'jk) 

(A 12) 

so that the general expression is 

(A 13) 

for the isotropic tensor in two-dimensions, which may be compared to the three- 
dimensional expression (A 9) .  

Setting i = j and k = 1 in (A 13) gives 

( E i i k k )  = ( E l l l l )  ('ii ' k k  + ' i k  ' ik  -'i& 'ik) 

= (Ell,,) ( 2  x 2+ 2-2) = 4 ( E l l l l )  (A 14) 

with coefficient 4 for this two-dimensional expression rather than 
dimensional expression given by (9). 

definition of C,, gives 

for the three- 

Substituting (A 14) and the equivalent expression ( e :e )  = S ( u ; , J  into the 

c,, = ( E i i k k ) / ( e : e ) ~ ( V T . V T )  

= 4(Ei  11 1 ) / ( 4 U i ,  I (2T2,) 

= 

which is equation (13) that  we wanted to prove. 
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